Lactic Acid
https://www.ncbi.nlm.nih.gov/pubmed/22520831
Oxidative Stress & Others
https://www.ncbi.nlm.nih.gov/pubmed/21621588
https://www.ncbi.nlm.nih.gov/pubmed/28217294
https://www.ncbi.nlm.nih.gov/pubmed/26739257
https://www.ncbi.nlm.nih.gov/pubmed/22146674
https://www.ncbi.nlm.nih.gov/pubmed/27643933
https://www.ncbi.nlm.nih.gov/pubmed/9169001
https://www.ncbi.nlm.nih.gov/pubmed/17486089
https://www.ncbi.nlm.nih.gov/pubmed/25485090
https://www.hindawi.com/journals/omcl/2012/353152/
https://www.ncbi.nlm.nih.gov/pubmed/29254278
https://www.ncbi.nlm.nih.gov/pubmed/25747486
https://www.ncbi.nlm.nih.gov/pubmed/29657720
https://www.ncbi.nlm.nih.gov/pubmed/28435468
https://www.ingentaconnect.com/content/asp/jnn/2017/00000017/00000007/art00102
https://www.scirp.org/journal/PaperInformation.aspx?paperID=62945
https://www.ncbi.nlm.nih.gov/pubmed/27777424
https://link.springer.com/chapter/10.1007/978-94-017-9691-0_6#page-1
https://www.ncbi.nlm.nih.gov/pubmed/25936365
https://www.ncbi.nlm.nih.gov/pubmed/22720117
https://www.ncbi.nlm.nih.gov/pubmed/22328284
https://medicalgasresearch.biomedcentral.com/articles/10.1186/2045-9912-2-17
https://www.ncbi.nlm.nih.gov/pubmed/20815764
https://www.ncbi.nlm.nih.gov/pubmed/21226992
https://www.ncbi.nlm.nih.gov/pubmed/20040921
https://www.ncbi.nlm.nih.gov/pubmed/19177183
https://www.ncbi.nlm.nih.gov/pubmed/17554332
https://www.researchgate.net/publication/236693816_Hydrogen-an_endogenous_antioxidant_in_the_body
https://www.ncbi.nlm.nih.gov/pubmed/26504515
https://www.sciencedirect.com/science/article/pii/S0924224411002408#bbib3
https://link.springer.com/chapter/10.1007/978-94-017-0728-2_5
https://www.sciencedirect.com/science/article/pii/S0006291X97966225
Alzheimer's
https://www.ncbi.nlm.nih.gov/pubmed/26271894
Cataracts
https://www.ncbi.nlm.nih.gov/pubmed/27606690
Cellular Redox State
https://www.ncbi.nlm.nih.gov/pubmed/27598129
Metabolic Syndrome - Obesity
https://www.ncbi.nlm.nih.gov/pubmed/20216947
Radiotherapy (Liver Tumors & Others)
https://www.ncbi.nlm.nih.gov/pubmed/22146004
https://www.ncbi.nlm.nih.gov/pubmed/24155664
https://www.ncbi.nlm.nih.gov/pubmed/22537465
https://www.ncbi.nlm.nih.gov/pubmed/21275114
Chemotherapy
https://www.ajol.info/index.php/tjpr/article/view/164283
Autism
https://www.ncbi.nlm.nih.gov/pubmed/22846252
https://www.ncbi.nlm.nih.gov/pubmed/23047522
https://www.europeanreview.org/wp/wp-content/uploads/1469.pdf
Telomere Shortening In Cancer Cells
https://link.springer.com/chapter/10.1007/0-306-46869-7_62
Sports Medicine
https://www.ncbi.nlm.nih.gov/pubmed/25525953
Cardiovascular & Metabolic Diseases
https://www.ncbi.nlm.nih.gov/pubmed/29763888
Pulmonary Disease
https://www.sciencedirect.com/science/article/pii/S1000194811600312
Cellular Senescence In Endothelial Cells
https://www.ncbi.nlm.nih.gov/pubmed/27477846
Leukemia
https://www.ncbi.nlm.nih.gov/pubmed/19202298
https://link.springer.com/chapter/10.1007/978-94-017-0726-8_67?fbclid=IwAR1-AFqe7nRBB6fwCNYPMuNUIoUIQQ5JXedaBlImw3Cl_WOl_6Y3m3EmfSI
Oxidative Stress In Space Flight
https://www.ncbi.nlm.nih.gov/pubmed/20851533
LDL - Cholesterol
https://www.ncbi.nlm.nih.gov/pubmed/23610159
Diabetes
https://www.ncbi.nlm.nih.gov/pubmed/19083400
https://www.pagepress.org/journals/index.php/ams/article/view/2940
https://www.ncbi.nlm.nih.gov/pubmed/19003114
https://www.ncbi.nlm.nih.gov/pubmed/21063772
https://www.ncbi.nlm.nih.gov/pubmed/16945392
https://www.ncbi.nlm.nih.gov/pubmed/17268057
https://www.jstage.jst.go.jp/article/bpb/30/2/30_2_234/_article/-char/ja/
Fibrosarcoma
https://www.ncbi.nlm.nih.gov/pubmed/22695858
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386386/?fbclid=IwAR0L4nYsO6Nhc98RAjXAJH7sHdMSKhw6OgkHXAx_Kn25p3fHQjDSInMsdBg
Reflux Disease
https://www.ncbi.nlm.nih.gov/pubmed/22844861
https://www.ncbi.nlm.nih.gov/pubmed/29512923
https://www.ncbi.nlm.nih.gov/pubmed/24589018
Irritable Bowel Syndrome
https://www.ncbi.nlm.nih.gov/pubmed/29849734?fbclid=IwAR130RI2be9K0dosfFOvX747O5yG5yeh1A_ECDPPc05w9hTVNzVIuIvOEqg
Hemodialysis
https://www.ncbi.nlm.nih.gov/pubmed/20190245
https://www.ncbi.nlm.nih.gov/pubmed/12846769
https://www.ncbi.nlm.nih.gov/pubmed/16760903?fbclid=IwAR3bVOg03j_m3Lukh2F6uWhT9EzOTgFNgoSPnEqjryLa0rgZ1ew9t5_YjlI
https://www.ncbi.nlm.nih.gov/pubmed/19342864?fbclid=IwAR0T0iV6v1YU-vn87L9OVN11DZ26wJmHk936oxEk2Gb-GcMOhkAsn2MFnPw
https://www.ncbi.nlm.nih.gov/pubmed/28902900?fbclid=IwAR0un__wjt1jQSbJrpaXxMOTb556khcH652yzPsx62tDjAIztFjzIut0GT8
https://www.ncbi.nlm.nih.gov/pubmed/17576297?fbclid=IwAR1TjTpQznkXPhd1oZXBkoRQgVRegJZ69jMi4r9jUAVF-9v_yZeW9LQ2DOA
https://www.ncbi.nlm.nih.gov/pubmed/20388631?fbclid=IwAR0mUE2G186uSfuDtp7F7eRzL0Ar4hkvpnqW9d9qiGmXRSYx6RYJc7Fuimw
https://rrtjournal.biomedcentral.com/articles/10.1186/s41100-016-0036-0?fbclid=IwAR2n1TQ2EklObkmQrgJ-jIRxp8xBy2ME-WlSKPDnVrfcre4R-J2gfRmfLEM
Rheumatoid Arthritis
https://www.ncbi.nlm.nih.gov/pubmed/24929023
https://www.ncbi.nlm.nih.gov/pubmed/23031079?fbclid=IwAR2Jr-ZNnvDGgFNU4CMaOmyGHfO9Dew70GWQrQxykUJ8EGpcLYxn10KL-fk
https://benthamopen.com/ABSTRACT/TONUTRJ-2-100?fbclid=IwAR3hc5piMOk0ype1OQAMBBLvDC5QXgKK3S9dwvMe5GVqtvelmKLW5XjcZTI
Neurological Disorders
https://www.ncbi.nlm.nih.gov/pubmed/27281176?fbclid=IwAR29mxiqfzLNLmt7sSk7ufs1Sd8affOzhw_DqXi8HFSgrPwfa2JM69THd8I
https://www.ncbi.nlm.nih.gov/pubmed/26271894?fbclid=IwAR2H610lWpU20GYdmzfATefQUbFcCcbhoio6wDkakSM-VFj0A0cmBIsQY4w
https://www.ncbi.nlm.nih.gov/pubmed/25251220?fbclid=IwAR3ipPsz94zWdniq01wUjT7uxW3SQaXm-53d-pNiMP7Z8UyCPMqyUPgRjso
https://www.ncbi.nlm.nih.gov/pubmed/28751802?fbclid=IwAR3U_m7H31O1GlxFi4dFzMfUkrHzlifWrSxPzamRdlQ69ohE7ImPh9-q0HE
https://www.ncbi.nlm.nih.gov/pubmed/27826423?fbclid=IwAR1FUlPZd4Hj7RQz8HgjFeZ1XVd0ODpLL6ulPunIoPPyXVHWZh8yktg21nU
Parkinson's
https://www.ncbi.nlm.nih.gov/pubmed/23400965?fbclid=IwAR2Q6gUqW4q8M-4lZua0EI74bBPnp5lnTPkChkb5EkIYQxZj9olDFDku31A
https://www.ncbi.nlm.nih.gov/pubmed/27176725?fbclid=IwAR2xfSUEe07oQvXX9eNoOZ03nDPTJc7L0T04RrcXE3QiTsVr7ns9gjGuCwo
https://www.ncbi.nlm.nih.gov/pubmed/24529916?fbclid=IwAR2gYXpg8OWMSIMH69QAmEGFvSQZw0gInAtDv8MjUJI-okP5WYqVJbC0VPs
Angiogenesis
https://www.ncbi.nlm.nih.gov/pubmed/18175936
Hepatitis B
https://www.ncbi.nlm.nih.gov/pubmed/24127924
Polycystic Ovarian Syndrome
https://www.ncbi.nlm.nih.gov/pubmed/28673586
Hydrogen Molecule Biomedical Symposium
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075685/
PH Level Effect On Cancer
https://cancerres.aacrjournals.org/content/69/6/2260
https://www.ncbi.nlm.nih.gov/pubmed/19801663?fbclid=IwAR1nMXIhMgwUOgU2xv6KfaAYFNyBAbyk6EsJADP_Fbik4sgWR_jVhw3zKPY
https://www.ncbi.nlm.nih.gov/pubmed/16707446?fbclid=IwAR3ZhAhfBxiH5Ik4d8sBfbic2GY9EcGH4Jwu6LJwXXYu6f8jsyJn0-yAFVk
https://www.ncbi.nlm.nih.gov/pubmed/28122260?fbclid=IwAR1AisoY0BhgS4dduDDaMGYoH8HLNShQ4wWHEMMl8m8coR2h0Djz7zijwnw
Pesticide Residues
https://www.ncbi.nlm.nih.gov/pubmed/22420563
Tumor Angiogenesis
https://www.jstage.jst.go.jp/article/bpb/31/1/31_1_19/_article/-char/ja/
Antioxidant Studies:
1. Akhavan, O., et al.,
Hydrogen-rich water for green reduction of graphene oxide suspensions.
International Journal of Hydrogen Energy, 2015. 40(16): p. 5553-5560.
2. Berjak, P., et al.,
Cathodic amelioration of the adverse effects of oxidative stress accompanying procedures necessary for cryopreservation of embryonic axes of recalcitrant-seeded species.
Seed Science Research, 2011. 21(3): p. 187-203.
3. Hanaoka, K.,
Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions.
Journal of Applied Electrochemistry, 2001. 31(12): p. 1307-1313.
4. Hanaoka, K., et al.,
Biophysical Chemistry, 2004. 107(1): p. 71-82.
5. Hiraoka, A., et al.,
In Vitro Physicochemical Properties of Neutral Aqueous Solution Systems (Water Products as Drinks) Containing Hydrogen Gas, 2-Carboxyethyl Germanium Sesquioxide, and Platinum Nanocolloid as Additives.
Journal of Health Science, 2010. 56(2): p. 167-174.
6. Hiraoka, A., et al.,
Journal of Health Science, 2004. 50(5): p. 456-465.
7. Kato, S., D. Matsuoka, and N. Miwa,
Materials Science and Engineering:, 2015. C 53: p. 7-10.
8. Lee, M.Y., et al.,
Electrolyzed-reduced water protects against oxidative damage to DNA, RNA, and protein.
Appl Biochem Biotechnol, 2006. 135(2): p. 133-44.
9. Ohsawa, I., et al.,
Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals.
Nat Med, 2007. 13(6): p. 688-694.
10. Ohta, S.,
Methods Enzymol, 2015. 555: p. 289-317.
11. Park, E.J., et al.,
Protective effect of electrolyzed reduced water on the paraquat-induced oxidative damage of human lymphocyte DNA.
Journal of the Korean Society for Applied Biological Chemistry, 2005. 48(2): p. 155-160.
12. Park, S.K., et al.,
Electrolyzed-reduced water confers increased resistance to environmental stresses.
Molecular & Cellular Toxicology, 2012. 8(3): p. 241-247.
13. Park, S.K. and S.K. Park,
Electrolyzed-reduced water increases resistance to oxidative stress, fertility, and lifespan via insulin/IGF-1-like signal in C. elegans.
Biol Res, 2013. 46(2): p. 147-52.
14. Penders, J., R. Kissner, and W.H. Koppenol,
Free Radic Biol Med, 2014.
15. Qian, L., et al.,
Transplantation, 2013. 95(5): p. 658-62.
16. Shi, Q.H., et al.,
Biomed Environ Sci, 2015. 28(3): p. 239-41.
17. Shirahata, S., et al.,
Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage.
Biochemical and Biophysical Research Communications, 1997. 234(1): p. 269-274.
18. Yan, H., et al.,
Bioscience, Biotechnology, and Biochemistry, 2011. 75(7): p. 1295-9.
19. Yan, H., et al.,
electrolyzed reduced water prolongs caenorhabditis elegans lifespan, in Animal Cell Technology: Basic & Applied Aspects.
2010, Springer Netherlands. p. 289-293.
20. Yan, H.X., et al.,
Extension of the Lifespan of Caenorhabditis elegans by the Use of Electrolyzed Reduced Water.
Bioscience Biotechnology and Biochemistry, 2010. 74(10): p. 2011-2015.
21. Yanagihara, T., et al.,
Electrolyzed hydrogen-saturated water for drinking use elicits an antioxidative effect: a feeding test with rats.
Biosci Biotechnol Biochem, 2005. 69(10): p. 1985-7.
Bones Studies:
22. Cai, W.W., et al.,
Treatment with hydrogen molecule alleviates TNFalpha-induced cell injury in osteoblast
Mol Cell Biochem, 2013. 373(1-2): p. 1-9.
23. Fujita, R., et al.,
Effect of molecular hydrogen saturated alkaline electrolyzed water on disuse muscle atrophy in gastrocnemius muscle.
Journal of Physiological Anthropology, 2011. 30(5): p. 195-201.
24. Guo, J.D., et al.,
Hydrogen water consumption prevents osteopenia in ovariectomized rats.
Br J Pharmacol, 2013. 168(6): p. 1412-20.
25. Hanaoka, T., et al.,
Medical Gas Research, 2011. 1(1): p. 18.
26. Itoh, T., et al.,
Biochemical and Biophysical Research Communications, 2011. 411(1): p. 143-9.
27. Kawasaki, H., J.J. Guan, and K. Tamama,
Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials.
Biochemical and Biophysical Research Communications, 2010. 397(3): p. 608-613.
28. Kubota, M., et al.,
Investigative Ophthalmology and Visual Science, 2011. 52(1): p. 427-33.
29. Lekic, T., et al.,
Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats.
Acta Neurochir Suppl, 2011. 111: p. 237-41.
30. Li, D.Z., et al.,
J Bone Miner Metab, 2013.
31. Sun, Y., et al.,
Osteoporos Int, 2013. 24(3): p. 969-78.
32. Takeuchi, S., et al.,
Hydrogen may inhibit collagen-induced platelet aggregation: an ex vivo and in vivo study.
Internal Medicine, 2012. 51(11): p. 1309-13.
33. Xu, Z., et al.,
Anti-inflammation effects of hydrogen saline in LPS activated macrophages and carrageenan induced paw oedema.
J Inflamm (Lond), 2012. 9: p. 2.
34. Yuan, L., et al.,
Administration of hydrogen-rich saline in mice with allogeneic hematopoietic stem-cell transplantation.
Med Sci Monit, 2015. 21: p. 749-54.
Brain Studies:
35. Bari, F., et al.,
Inhalation of Hydrogen Gas Protects Cerebrovascular Reactivity Against Moderate but Not Severe Perinatal Hypoxic Injury in Newborn Piglets.
Stroke, 2010. 41(4): p. E323-E323.
36. Cui, Y., et al.,
Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats.
J Surg Res, 2014.
37. Dohi, K., et al.,
Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury.
PLoS One, 2014. 9(9): p. e108034.
38. Domoki, F., et al.,
Hydrogen is Neuroprotective and Preserves Cerebrovascular Reactivity in Asphyxiated Newborn Pigs.
Pediatric Research, 2010. 68(5): p. 387-392.
39. Eckermann, J.M., et al.,
Hydrogen is neuroprotective against surgically induced brain injury.
Medical Gas Research, 2011. 1(1): p. 7.
40. Feng, Y., et al.,
Curr Eye Res, 2013. 38(3): p. 396-404.
41. Fu, Y., et al.,
Neuroscience Letters, 2009. 453: p. 81–85.
42. Fujita, K., et al.,
Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease.
PLoS One, 2009. 4(9): p. e7247.
43. Gu, Y., et al.,
Drinking Hydrogen Water Ameliorated Cognitive Impairment in Senescence-Accelerated Mice.
Journal of Clinical Biochemistry and Nutrition, 2010. 46(3): p. 269-276.
44. Han, L., et al.,
Hydrogen-rich water protects against ischemic brain injury in rats by regulating calcium buffering proteins.
Brain Res, 2015.
45. Hong, Y., et al.,
Beneficial effect of hydrogen-rich saline on cerebral vasospasm after experimental subarachnoid hemorrhage in rats.
J Neurosci Res, 2012. 90(8): p. 1670-80.
46. Hong, Y., et al.,
Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3beta signaling pathway.
PLoS One, 2014. 9(4): p. e96212.
47. Hou, Z., et al.,
Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury.
Brain Res Bull, 2012. 88(6): p. 560-5.
48. Huang, G., et al.,
The neuroprotective effects of intraperitoneal injection of hydrogen in rabbits with cardiac arrest.
Resuscitation, 2013. 84(5): p. 690-5.
49. Hugyecz, M., et al.,
Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus.
Brain Research, 2011. 1404: p. 31-8.
50. Ito, M., et al.,
Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats.
Med Gas Res, 2012. 2(1): p. 15.
51. Ji, X., et al.,
Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress.
Brain Research, 2010. 1354: p. 196-205.
52. Ji, X., et al.,
Journal of Surgical Research, 2012. 178(1): p. e9-16.
53. Kashiwagi, T., et al.,
Suppression of Oxidative Stress-Induced Apoptosis of Neuronal Cells by Electrolyzed-Reduced Water.
Animal Cell Technology Meets Genomics, 2005. 2: p. 257-260.
54. Kashiwagi, T., et al.,
Electrochemically reduced water protects neural cells from oxidative damage.
Oxid Med Cell Longev, 2014. 2014: p. 869121.
55. Kobayashi, H., et al.,
Effects of Hydrogen Gas in a Mouse Cold Induced Brain Injury Model.
Journal of Neurotrauma, 2011. 28(5): p. A64-A64.
56. Kuroki, C., et al.,
Neuroprotective effects of hydrogen gas on brain in three types of stress models: alpha P-31-NMR study.
Neuroscience Research, 2009. 65: p. S124-S124.
57. Kuroki, C., et al.,
Neuroprotective effects of hydrogen gas on brain in three types of stress models: A P-31-NMR and ESR study.
Neuroscience Research, 2011. 71: p. E406-E406.
58. Li, J., et al.,
Brain Res, 2010. 1328: p. 152-161.
59. Liu, F.T., et al.,
CNS Neurosci Ther, 2014.
60. Liu, L., et al.,
Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis.
Brain Res, 2014. 1589: p. 78-92.
61. Liu, W., et al.,
Protective effects of hydrogen on fetal brain injury during maternal hypoxia.
Acta Neurochir Suppl, 2011. 111: p. 307-11.
62. Manaenko, A., et al.,
Acta Neurochir Suppl, 2011. 111: p. 179-83.
63. Manaenko, A., et al.,
Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice.
Critical Care Medicine, 2013. 41(5): p. 1266-75.
64. Mano, Y., et al.,
Free Radic Biol Med, 2014. 69: p. 324-30.
65. Matsumoto, A., et al.,
Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice.
Sci Rep, 2013. 3: p. 3273.
66. Mei, K., et al.,
Hydrogen protects rats from dermatitis caused by local radiation.
J Dermatolog Treat, 2014. 25(2): p. 182-8.
67. Nagata, K., et al.,
Neuropsychopharmacology, 2009. 34(2): p. 501-508.
68. Olah, O., et al.,
Delayed neurovascular dysfunction is alleviated by hydrogen in asphyxiated newborn pigs.
Neonatology, 2013. 104(2): p. 79-86.
69. Ono, H., et al.,
Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study.
Medical Gas Research, 2011. 1(1): p. 12.
70. Ostojic, S.M.,
Targeting molecular hydrogen to mitochondria: Barriers and gateways.
Pharmacol Res, 2015. 94: p. 51-3. (brain)
71. Pshenichnyuk, S.A. and A.S. Komolov,
Dissociative Electron Attachment to Resveratrol as a Likely Pathway for Generation of the H2 Antioxidant Species Inside Mitochondria.
The Journal of Physical Chemistry Letters, 2015. 6(7): p. 1104-1110.
72. Sato, Y., et al.,
Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice.
Biochem Biophys Res Commun, 2008. 375(3): p. 346-350.
73. Shen, L., et al.,
Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest.
Neurochemical Research, 2011. 36(8): p. 1501-11.
74. Shen, M.H., et al.,
Neuroprotective effect of hydrogen-rich saline in acute carbon monoxide poisoning.
CNS Neurosci Ther, 2013. 19(5): p. 361-3.
75. Spulber, S., et al.,
Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice.
PLoS One, 2012. 7(7): p. e42078.
76. Sun, Q., et al.,
Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity.
Critical Care Medicine, 2011. 39(4): p. 765-9.
77. Takeuchi, S., et al.,
Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats.
BMC Neurosci, 2015. 16(1): p. 22. (brain)
78. Ueda, Y., A. Nakajima, and T. Oikawa,
Neurochemical Research, 2010. 35(10): p. 1510-1515.
79. Wang, C., et al.,
Neuroscience Letters, 2011. 491(2): p. 127-32.
80. Wang, T., et al.,
Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats.
Toxicol Appl Pharmacol, 2014.
81. Wang, W., et al.,
Hydrogen rich saline reduces immune-mediated brain injury in rats with acute carbon monoxide poisoning.
Neurological Research, 2012. 34(10): p. 1007-15.
82. Xie, F. and X. Ma,
Molecular Hydrogen and its Potential Application in Therapy of Brain Disorders.
Brain Disord Ther, 2014: p. 2.
83. Yan, H., et al.,
BMC Proc, 2011. 5 Suppl 8: p. P69.
84. Yamada, T., et al.,
Hydrogen supplementation of preservation solution improves viability of osteochondral grafts.
ScientificWorldJournal, 2014. 2014: p. 109876. (bones)
85. Yokoi, I.,
Neuroprotective effects of hydrogen gas on brain in three types of stress models: a P-31 NMR and ESR study. Neuroscience Research, 2010. 68: p. E320-E320.
86. Zhan, Y., et al.,
Critical Care Medicine, 2012. 40(4): p. 1291-6.
87. Zhang, L., et al.,
Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3beta in the DRG in rats.
Brain Res Bull, 2014. 106C: p. 47-55.
88. Zhou, J., et al.,
Hydrogen-rich saline reverses oxidative stress, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and puncture.
Journal of Surgical Research, 2012. 178(1): p. 390-400.
89. Zhuang, Z., et al.,
Nuclear factor-kappaB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits.
J Neurosci Res, 2013. 91(12): p. 1599-608.
90. Zhuang, Z., et al.,
Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits.
BMC Neurosci, 2012. 13: p. 47.
Cancer Studies:
91. Akio Kagawa, K.K., Masayuki Mizumoto, Yutaka Tagawa, Yoichi Masiko,
Influence of Hydrogen Discharged from Palladium Base Hydrogen Storage Alloys on Cancer Cells.
Materials Science Forum, 2012. 706: p. 520-525.
92. Asada, R., et al.,
Antitumor effects of nano-bubble hydrogen-dissolved water are enhanced by coexistent platinum colloid and the combined hyperthermia with apoptosis-like cell death.
Oncol Rep, 2010. 24(6): p. 1463-70.
93. Chen, Y., et al.,
On the antitumor properties of biomedical magnesium metal.
Journal of Materials Chemistry B, 2015. 3(5): p. 849-858.
94. Dole, M., F.R. Wilson, and W.P. Fife,
Hyperbaric hydrogen therapy: a possible treatment for cancer.
Science, 1975. 190(4210): p. 152-4.
95. Jun, Y., et al.,
Suppression of invasion of cancer cells and angiogenesis by electrolyzed reduced water.
In Vitro Cellular & Developmental Biology-Animal, 2004. 40: p. 79A-79A.
96. Kinjo, T., et al.,
Suppressive effects of electrochemically reduced water on matrix metalloproteinase-2 activities and in vitro invasion of human fibrosarcoma HT1080 cells.
Cytotechnology, 2012. 64(3): p. 357-371.
97. Komatsu, T., Katakura, Y., Teruya, K., Otsubo, K., Morisawa, S., & and S. Shirahata,
Electrolyzed reduced water induces differentiation in K-562 human leukemia cells.
Animal cell technology: Basic & applied aspects, 2003: p. 387-391.
98. LEE, K.-J., et al.,
Anticancer Effect of Alkaline Reduced Water.
J Int Soc Life Inf Sci, 2004. 22(2): p. 302-305.
99. Matsushita, T., et al.,
Investigation of protective effect of hydrogen-rich water against cisplatin-induced nephrotoxicity in rats using blood oxygenation level-dependent magnetic resonance imaging.
Jpn J Radiol, 2011. 29(7): p. 503-12.
100. Matsuzaki, M., et al.,
in Materials Science and Chemical Engineering 2013. p. 284-290.
101. Motoishi, A., et al.,
Influence of Active Hydrogen Discharged from Palladium-Nickel Alloy Powder on Biological Cells.
Advanced Materials Research, 2013. 669: p. 273-278.
102. Nakanishi, K., et al.,
growth suppression of HL60 and L6 cells by atomic hydrogen,
in Animal Cell Technology: Basic & Applied Aspects, . 2010, Springer Netherlands. p. 323-325.
103. Nakashima-Kamimura, N., et al.,
Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice.
Cancer Chemother Pharmacol, 2009.
104. Nan, M., C. Yangmei, and Y. Bangcheng,
Magnesium metal-A potential biomaterial with antibone cancer properties.
J Biomed Mater Res A, 2014. 102(8): p. 2644-51.
105. Nishikawa, H., et al.,
Suppression of two-stage cell transformation by electrolyzed reduced water containing platinum nanoparticles,
in Animal Cell Technology: Basic & Applied Aspects. 2006, Springer Netherlands. p. 113-119.
106. Nishikawa, R., et al.,
Electrolyzed Reduced Water Supplemented with Platinum Nanoparticles Suppresses Promotion of Two-stage Cell Transformation.
Cytotechnology, 2005. 47(1-3): p. 97-105.
107. Nishikawa, R., et al.,
Suppression of two-stage cell transformation by electrolyzed reduced water/platinum nanocolloids.
In Vitro Cellular & Developmental Biology-Animal, 2004. 40: p. 79A-79A.
108. Roberts, B.J., et al.,
. Cancer Treat Rep, 1978. 62(7): p. 1077-9.
109. Runtuwene, J., et al.,
Hydrogen-water enhances 5-fluorouracil-induced inhibition of colon cancer
. PeerJ, 2015. 3: p. e859.
110. Shirahata, S.K., K. Kusumoto, M. Gotoh, K. Teruya, K. Otsubo, J. S. Morisawa, H. Hayashi, K. Katakura,
Electrolyzed Reduced Water Which Can Scavenge Active Oxygen Species Suppresses Cell Growth and Regulates Gene Expression of Animal Cells.
New Developments and New Applications in Animal Cell Technology, 2002: p. 93-96.
111. Saitoh, Y., et al.,
Neutral pH Hydrogen-Enriched Electrolyzed Water Achieves Tumor-Preferential Clonal Growth Inhibition Over Normal Cells and Tumor Invasion Inhibition Concurrently With Intracellular Oxidant Repression.
Oncology Research, 2008. 17(6): p. 247-255.
112. Saitoh, Y., et al.,
Platinum nanocolloid-supplemented hydrogen dissolved water inhibits growth of human tongue carcinoma cells preferentially over normal cells.
Exp Oncol, 2009. 31(3): p. 156-62.
113. Tsai, C.F., et al.,
Enhanced induction of mitochondrial damage and apoptosis in human leukemia HL-60 cells due to electrolyzed-reduced water and glutathione.
Biosci Biotechnol Biochem, 2009. 73(2): p. 280-7.
114. Ye, J., et al.,
Inhibitory effect of electrolyzed reduced water on tumor angiogenesis.
Biological & Pharmaceutical Bulletin, 2008. 31(1): p. 19-26.
Eye and Ear Studies:
115. Chen, L., et al.,
Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect.
PLoS One, 2014. 9(6): p. e100774.
116. Feng, M., et al.,
Protective effect of saturated hydrogen saline against blue light-induced retinal damage in rats.
Int J Ophthalmol, 2012. 5(2): p. 151-7.
117. Huang, L., et al.,
Hydrogen saline treatment attenuates hyperoxia-induced retinopathy by inhibition of oxidative stress and reduction of VEGF expression.
Ophthalmic Res, 2012. 47(3): p. 122-7.
118. Kashiwagi, T., et al.,
Suppression of glutamate-induced neural cell death by electrolyzed-reduced water, in Animal Cell Technology: Basic & Applied Aspects.
2004, Springer Netherlands. p. 105-109.
119. Kikkawa, Y.S., et al.,
Hydrogen protects auditory hair cells from free radicals.
Neuroreport, 2009. 20(7): p. 689-94.
120. Kurioka, T., et al.,
Inhaled hydrogen gas therapy for prevention of noise-induced hearing loss through reducing reactive oxygen species.
Neurosci Res, 2014.
121. Lin, Y., et al.,
Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs.
Neuroscience Letters, 2011. 487(1): p. 12-16.
122. Moossavi, A., F. Bagheri, and H.R. Farkhani,
Capabilities of hydrogen Molecules for use in the prevention and treatment in noise induced hearing loss.
Rehabilitation Medicine 2014. 2(4).
123. Oharazawa, H., et al.,
Protection of the Retina by Rapid Diffusion of Hydrogen: Administration of Hydrogen-Loaded Eye Drops in Retinal Ischemia-Reperfusion Injury.
Investigative Ophthalmology & Visual Science, 2010. 51(1): p. 487-492.
124. Qu, J., et al.,
Inhalation of hydrogen gas attenuates ouabain-induced auditory neuropathy in gerbils.
Acta Pharmacologica Sinica, 2012. 33(4): p. 445-451.
125. Qu, J., et al.,
Inhalation of hydrogen gas attenuates cisplatin-induced ototoxicity via reducing oxidative stress.
Int J Pediatr Otorhinolaryngol, 2012. 76(1): p. 111-5.
126. Sun, J.C., et al.,
Hydrogen-rich saline promotes survival of retinal ganglion cells in a rat model of optic nerve crush.
PLoS One, 2014. 9(6): p. e99299.
127. Taura, A., et al.,
Hydrogen protects vestibular hair cells from free radicals.
Acta Oto-Laryngologica, 2010. 130: p. 95-100.
128. Tian, L., et al.,
Hydrogen-rich saline ameliorates the retina against light-induced damage in rats.
Med Gas Res, 2013. 3(1): p. 19.
129. Xiao, X., et al.,
Protective effects of hydrogen saline on diabetic retinopathy in a streptozotocin-induced diabetic rat model.
Journal of Ocular Pharmacology and Therapeutics, 2012. 28(1): p. 76-82.
130. Yang, C.X., H. Yan, and T.B. Ding,
Hydrogen saline prevents selenite-induced cataract in rats.
Molecular Vision, 2013. 19: p. 1684-93.
131. Yokota, T., et al.,
Clin Experiment Ophthalmol, 2015.
132. Zhou, Y., et al.,
Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs.
Neuroscience, 2012. 209: p. 47-53.
H2 Chemistry and Physics Studies:
133. Aoki, K., et al.,
Is hydrogen gas in water present as bubbles or hydrated form?
Journal of Electroanalytical Chemistry, 2012. 668: p. 83-89.
134. Black, J.H.,
Chemistry and cosmology.
Faraday Discussions, 2006. 133: p. 27-32; discussion 83-102, 449-52.
135. Buxton, G.V., et al.,
Phys Chem Ref Data, 1988. 17: p. 513-886.
136. Choi, W.K.,
Investigations of Quantitative Reducibility Determination and Reducibility Variations of Neutral Hydrogen-Dissolved Water by Electrochemical Analysis.
Int. J. Electrochem. Sci, 2014. 9: p. 7266-7276.
137. Donald, W.A., et al.,
Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.
Chemistry, 2009. 15(24): p. 5926-34.
138. Ehrenfreund, P., et al.,
Astrophysical and astrochemical insights into the origin of life.
Reports on Progress in Physics, 2002. 65(10): p. 1427-1487.
139. Hamasaki, T., et al.,
Langmuir, 2008. 24(14): p. 7354-64.
140. Huber, C. and G. Wachtershauser,
alpha-Hydroxy and alpha-amino acids under possible Hadean, volcanic origin-of-life conditions.
Science, 2006. 314(5799): p. 630-2.
141. Jain, I.P.,
Hydrogen the fuel for 21st century.
International Journal of Hydrogen Energy
142. Kikuchi, K., et al.,
Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis.
Journal of Electroanalytical Chemistry, 2007. 600(2): p. 303-310.
143. Kikuchi, K., et al.,
Hydrogen particles and supersaturation in alkaline water from an Alkali-Ion-Water electrolyzer.
Journal of Electroanalytical Chemistry, 2001. 506(1): p. 22-27.
144. Kikuchi, K., et al.,
Journal of Applied Electrochemistry, 2001. 31(12): p. 1301-1306.
145. Klunder, K., et al.,
A Study of Dissolved Gas Dynamics in Mixed Stream Electrolyzed Water.
Electrochemistry, 2012. 80(8): p. 574-577.
146. Kuhlmann, J., et al.,
Fast escape of hydrogen from gas cavities around corroding magnesium implants.
Acta Biomater, 2012.
147. Liu, W., X. Sun, and S. Ohta,
Hydrogen Element and Hydrogen Gas.
Hydrogen Molecular Biology and Medicine. 2015: Springer Netherlands.
148. Ramachandran, R. and R.K. Menon,
An overview of industrial uses of hydrogen.
International Journal of Hydrogen Energy, 1998. 23(7): p. 593-598.
149. Renault, J.P., R. Vuilleumier, and S. Pommeret,
Hydrated electron production by reaction of hydrogen atoms with hydroxide ions: A first-principles molecular dynamics study.
Journal of Physical Chemistry A, 2008. 112(30): p. 7027-7034.
150. Sabo, D., et al.,
Molecular studies of the structural properties of hydrogen gas in bulk water.
Molecular Simulation, 2006. 32(3-4): p. 269-278.
151. Seo, T., R. Kurokawa, and B. Sato,
A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum.
Medical Gas Research, 2012. 2: p. 1.
152. Takenouchi, T., U. Sato, and Y. Nishio,
Behavior of Hydrogen Nanobubbles Generated in Alkaline Electrolyzed Water.
Electrochemistry, 2009. 77(7): p. 521-523.
153. Tanaka, Y., et al.,
Dissolution of hydrogen and the ratio of the dissolved hydrogen content to the produced hydrogen in electrolyzed water using SPE water electrolyzer.
Electrochimica Acta, 2003. 48(27): p. 4013-4019.
154. Zeng, K. and D.K. Zhang,
Recent progress in alkaline water electrolysis for hydrogen production and applications.
Progress in Energy and Combustion Science, 2010. 36(3): p. 307-326.
155. Zheng, Y.F., X.N. Gu, and F. Witte.,
Biodegradable metals.
Materials Science and Engineering: R: Reports, 2014. 77: p. 1-34.
H2 From Bacteria Studies:
156. Carter, E.A., et al.,
Use of hydrogen gas (H2) analysis to assess intestinal absorption. Studies in normal rats and in rats infected with the nematode, Nippostrongylus brasiliensis.
Gastroenterology, 1981. 81(6): p. 1091-7.
157. Chen, X., et al.,
Medical Gas Research, 2012. 2: p. 3.
158. Chen, X., et al.,
Lactulose Mediates Suppression of Dextran Sodium Sulfate-Induced Colon Inflammation by Increasing Hydrogen Production.
Dig Dis Sci, 2013.
159. Chen, X., et al.,
Lactulose: an indirect antioxidant ameliorating inflammatory bowel disease by increasing hydrogen production.
Medical Hypotheses, 2011. 76(3): p. 325-7.
160. Christl, S.U., et al.,
Production, metabolism, and excretion of hydrogen in the large intestine.
Gastroenterology, 1992. 102(4 Pt 1): p. 1269-77.
161. Kanazuru, T., et al.,
Role of Hydrogen Generation by Klebsiella pneumoniae in the Oral Cavity.
Journal of Microbiology, 2010. 48(6): p. 778-783.
162. Kayar, S.R., et al.,
Hydrogen Gas Is Not Oxidized by Mammalian-Tissues under Hyperbaric Conditions.
Undersea & Hyperbaric Medicine, 1994. 21(3): p. 265-275.
163. Lee, S.H. and B.K. Choi,
Antibacterial effect of electrolyzed water on oral bacteria.
J Microbiol, 2006. 44(4): p. 417-22.
164. Levitt, M.D.,
Production and Excretion of Hydrogen Gas in Man.
New England Journal of Medicine, 1969. 281(3): p. 122-&.
165. Liu, C., et al.,
Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes.
Sci Rep, 2014. 4: p. 5485.
166. Oku, T. and S. Nakamura,
European Journal of Clinical Nutrition, 2003. 57(9): p. 1150-1156.
167. Rizkalla, S.W., et al.,
Chronic consumption of fresh but not heated yogurt improves breath-hydrogen status and short-chain fatty acid profiles: a controlled study in healthy men with or without lactose maldigestion.
Am J Clin Nutr, 2000. 72(6): p. 1474-9.
168. Sack, D.A. and C.B. Stephensen,
Liberation of hydrogen from gastric acid following administration of oral magnesium.
Dig Dis Sci, 1985. 30(12): p. 1127-33.
169. Shimouchi, A., et al.,
Molecular hydrogen consumption in the human body during the inhalation of hydrogen gas.
Adv Exp Med Biol, 2013. 789: p. 315-21.
170. Shimouchi, A., et al.,
Estimation of molecular hydrogen consumption in the human whole body after the ingestion of hydrogen-rich water.
Oxygen Transport to Tissue Xxi, 2012. 737: p. 245-50.
171. Shimouchi, A., et al.,
Effect of Dietary Turmeric on Breath Hydrogen.
Digestive Diseases and Sciences, 2009. 54(8): p. 1725-1729.
172. Shimouchi, A., et al.,
Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk.
Biomarker Insights, 2009. 4: p. 27-32.
173. Sone, Y., et al.,
Everyday breath hydrogen excretion profile in Japanese young female students.
J Physiol Anthropol Appl Human Sci, 2000. 19(5): p. 229-37.
174. Strocchi, A. and M.D. Levitt,
Maintaining intestinal H2 balance: credit the colonic bacteria.
Gastroenterology, 1992. 102(4 Pt 1): p. 1424-6.
175. Suzuki, Y., et al.,
Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract?
FEBS Letters, 2009. 583(13): p. 2157-9.
176. Tanikawa, R., et al.,
Relationship between Exhaled Hydrogen and Human Neutrophil Function in the Japanese General Population.
Hirosaki Medical Journal, 2015. 65: p. 138-146.
177. Xie, K.L., et al.,
Shock, 2010. 34(5): p. 495-501.
178. Zhai, X., et al.,
Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression.
Free Radic Biol Med, 2013. 65: p. 731-41.
H2 Review Articles:
179. Ball, J.,
Recently published papers: More about EGDT, experimental therapies and some inconvenient truths.
Critical Care, 2007. 11(5).
180. Cavallo, T.,
An essay on the medicinal properties of factitious airs: with an appendix on the nature of blood.
1798: Printed for the author, and sold by C. Dilly [and 2 others].
181. Chang, W.J. and L.H. Toledo-Pereyra,
The potential benefits of hydrogen-rich saline in ischemia and reperfusion injury.
Journal of Surgical Research, 2013. 180(2): p. 248-9.
182. Chen, X., X. Sun, and S. Ohta,
Future Directions in Hydrogen Studies.
Hydrogen Molecular Biology and Medicine. 2015: Springer Netherlands.
183. Chen, J., et al.,
Hydrogen therapy may be a promising, safe and effective treatment for diabetic erectile dysfunction: a hypothesis.
Alternative Medicine Studies, 2011. 1(1): p. 11.
184. Chuai, Y., et al.,
Molecular hydrogen and radiation protection.
Free Radical Research, 2012. 46 (9): p. 1061-7.
185. Chuai, Y., et al.,
A possible prevention strategy of radiation pneumonitis: combine radiotherapy with aerosol inhalation of hydrogen-rich solution.
Medical Science Monitor, 2011. 17(4): p. HY1-4.
186. Deng, J., et al.,
Neuroprotective gases–fantasy or reality for clinical use?
Prog Neurobiol, 2014.115: p. 210-45.
187. Dixon, B.J., J. Tang, and J.H. Zhang,
The evolution of molecular hydrogen: a noteworthy potential therapy with clinical significance.
Med Gas Res, 2013. 3(1): p. 10.
188. George, J.F. and A. Agarwal,
Hydrogen: another gas with therapeutic potential.
Kidney International, 2010. 77(2): p. 85-87.
189. Ghanizadeh, A.,
Hydrogen as a novel hypothesized emerging treatment for oxidative stress in autism.
European Review for Medical and Pharmacological Sciences, 2012. 16(9): p. 1313-4.
190. Ghanizadeh, A.,
Physical exercise and intermittent administration of lactulose may improve autism symptoms through hydrogen production.
Medical Gas Research, 2012. 2(1): p. 19.
191. Ghanizadeh, A. and M. Berk,
Molecular hydrogen: an overview of its neurobiological effects and therapeutic potential for bipolar disorder and schizophrenia.
Med Gas Res, 2013. 3(1): p. 11.
192. Goncharuk, V.V., et al.,
The use of redox potential in water treatment processes.
Journal of Water Chemistry and Technology, 2010. 32(1): p. 1-9.
193. Gopinath, D., et al.,
MOLECULAR HYDROGEN THERAPY: A MAJOR MILESTONE IN MEDICINE.
World Journal of Pharmacy and Pharmaceutical Sciences, 2014. 3(8): p. 1201-1205.
194. Hardeland, R.,
Hydrogen therapy: a future option in critical care?
Crit Care Med, 2012. 40(4): p. 1382-3.
195. Henry, M. and J. Chambron,
Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW).
Water 2013. 5(4): p. 2094-2115.
196. Hong, Y., S. Chen, and J.M. Zhang,
Hydrogen as a selective antioxidant: a review of clinical and experimental studies.
Journal of International Medical Research, 2010.38(6): p. 1893-903.
197. Huang, C.S., et al.,
Recent advances in hydrogen research as a therapeutic medical gas.
Free Radical Research, 2010.44(9): p. 971-982.
198. Jones, D.,
Nature 1996.383: p. 676.
199. Jun, X.S. and H. Zhang,
Hydrogen-an endogenous antioxidant in the body.
Academic Journal of Second Military Medical University, 2008. 28 (3): p. 233-235.
200. Kumon, K.,
Artificial Organs, 1997. 21 (1): p. 2-4.
201. Li, D. and W.C. Wang,
Can hydrogen retard the progression of osteoarthritis?
African Journal of Pharmacy and Pharmacology, 2012. 6 (5): p. 352-354.
202. Liu, C., et al.,
Hydrogen therapy may be an effective and specific novel treatment for acute radiation syndrome.
Medical Hypotheses, 2010. 74 (1): p. 145-146.
203. Liu, S., X. Sun, and H. Tao,
Hydrogen from a biologically inert gas to a unique antioxidant.
Second Military Medical University,
204. Milton, S.L.,
Journal of Experimental Biology, 2009. 212 (15): p. v-vi.
205. Nakao, A., et al.,
Therapeutic Antioxidant Medical Gas.
Journal of Clinical Biochemistry and Nutrition, 2009. 44 (1): p. 1-13.
206. Nakata, K., et al.,
Stimulation of human damaged sperm motility with hydrogen molecule.
Med Gas Res, 2015. 5 (1): p. 2.
207. Neale, R.J.,
Dietary fibre and health: the role of hydrogen production.
Medical Hypotheses, 1988.27 (1): p. 85-7.
208. Ohno, K., M. Ito, and M. Ichihara,
Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases.
Oxidative Medicine and Cellular Longevity, 2012.
2012 :p. 353152.
209. Ohta, S.,
Nihon Ronen Igakkai Zasshi, 2008. 45(4): p. 355-62.
210. Ohta, S.,
Recent progress toward hydrogen medicine: potential of molecular hydrogen for preventive and therapeutic applications.
Curr Pharm Des, 2011. 17(22): p. 2241-52.
211. Ohta, S.,
Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases.
Biochimica et Biophysica Acta, 2012. 1820 (5): p. 586-94.
212. Ohta, S.,
Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine.
Pharmacol Ther, 2014.
213. Ohta, S., A. Nakao, and K. Ohno,
The 2011 Medical Molecular Hydrogen Symposium: An Inaugural Symposium of the Journal Medical Gas Research
Medical Gas Research, 2011. 1: p. 10.
214. Okouchi, S., et al.,
Water desirable for the human body in terms of oxidation-reduction potential (ORP) to pH relationship.
Journal of Food Science, 2002. 67(5): p. 1594-1598.
215. Ostojic, S.M.,
Molecular hydrogen: An inert gas turns clinically effective.
Ann Med, 2015: p. 1-4.
216. Ostojic, S.M.,
Serum alkalinization and hydrogen-rich water in healthy men.
Mayo Clin Proc, 2012. 87 (5): p. 501-2.
217. Qian, L., J. Shen, and X. Sun,
Methods of Hydrogen Application.
Hydrogen Molecular Biology and Medicine. 2015: Springer Netherlands.
218. Qian, L., et al.,
The potential cardioprotective effects of hydrogen in irradiated mice.
J Radiat Res, 2010. 51 (6): p. 741-7.
219. Qian, L., et al.,
Hydrogen as a New Class of Radioprotective Agent.
International journal of biological sciences, 2013. 9(9): p. 887-894.
220. Qian, L.R., et al.,
The Hypothesis of an Effective Safe and Novel Radioprotective Agent Hydrogen-rich Solution.
West Indian Medical Journal, 2010. 59 (2): p. 122-124.
221. Qian, L., J. Shen, and X. Sun,
Therapeutic Effects of Hydrogen on Different Diseases.
Hydrogen Molecular Biology and Medicine. 2015: Springer Netherlands. 81-97.
222. Qu, J. and X. Lu,
Hydrogen: A promising novel treatment for hepatic encephalopathy?
Free Radic Biol Med, 2013.
223. Rheem, K.E., et al.,
Does alkaline-reduced hexagonal water delay the aging process in Drosophila?
Geriatr Gerontol Int, 2012. 12(1): p. 151-4.
224. Schoenfeld, M.P., et al.,
A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures.
Medical Gas Research, 2012. 2: p. 8.
225. Schoenfeld, M.P., et al.,
Hydrogen therapy may reduce the risks related to radiation-induced oxidative stress in space flight.
Medical Hypotheses, 2011. 76 (1): p. 117-8.
226. Shen, M., et al.,
A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine.
Med Gas Res, 2014. 4: p. 17.
227. Shen, Y., et al.,
Hydrogen gas: a novel antioxidant for chronic obstructive pulmonary disease.
Journal of Medical Colleges of PLA, 2011. 26 (2): p. 94-97.
228. Shi, P. and W. Sun,
A hypothesis on chemical mechanism of the effect of hydrogen.
Med Gas Res, 2012. 2(1): p. 17.
229. Shirahata, S., T. Hamasaki, and K. Teruya,
Advanced research on the health benefit of reducedwater.
Trends in Food Science & Technology, 2012. 23 (2): p. 124-131.
230. Shirahata, S.A.N.E.T.A.K.A.,
Reduced water for prevention of diseases.
Animal Cell Technology: Basic and Applied Aspects 2002. 12: p. 25-30.
231. Simon, A.R.,
Hydrogen-supplemented drinking water, just soda or an elixir of life?
Transplant International, 2012. 25 (12): p. 1211-1212.
232. Sobue, S., et al.,
Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents.
Mol Cell Biochem, 2015. 403 (1-2): p. 231-41.
233. Tomura, S., et al.,
Bōei Ika Daigakkō zasshi= Journal of the National Defense Medical College, 2014. 39: p. 96-102.
234. Wang, R.,
Gasotransmitters: growing pains and joys.
Trends Biochem Sci, 2014. 39 (5): p. 227-32.
235. Wood, K.C. and M.T. Gladwin,
The hydrogen highway to reperfusion therapy.
Nat Med, 2007.13(6): p. 673-674.
236. Yang, F., et al.,
Simulation study on the outlet flow dynamics of a hydride-based hydrogen storage canister for medical use.
International Journal of Hydrogen Energy 2014. 39 (12): p. 6548-6557.
237. Zeng, J., Z. Ye, and X. Sun,
Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture.
Med Gas Res, 2014. 4: p. 15.
238. Zhai, X., et al.,
Review and prospect of the biomedical effects of hydrogen.
Med Gas Res, 2014. 4 (1): p. 19.
239. Zhai, X., A. Nakao, and X. Sun,
Detection Techniques for Hydrogen.
Hydrogen Molecular Biology and Medicine. 2015: Springer Netherlands.
240. Zhang, D.Q., J.H. Zhu, and W.C. Chen,
Acarbose: a new option in the treatment of ulcerative colitis by increasing hydrogen production.
Afr J Tradit Complement Altern Med, 2012. 10 (1): p. 166-9.
241. Zhang, J.Y., et al.,
A Review of Hydrogen as a New Medical Therapy.
Hepato-Gastroenterology, 2012. 59 (116): p. 1026-1032.
242. Zhou, J., et al.,
Targeting gaseous molecules to protect against cerebral ischaemic injury: mechanisms and prospects.
Clinical and Experimental Pharmacology and Physiology, 2012. 39(6): p. 566-76.